Accelerating Linear Programming Solving
by Exploiting the Performance Variability
via Reinforcement Learning

Xijun Li 1,2, Qingyu Qu 2, Fangzhou Zhu 2, Mingxuan Yuan 2, Jia Zeng 2, and Jie Wang 1
1 University of Science and Technology of China
2 Huawei Noah' s Ark Lab

Outline

* Preliminary

« Motivation: Who Cares and Why We Cares
* The Proposed Method

- Experiment and conclusion

Preliminary

‘ Understanding Mathematical) Modeling __, =\ _,l !'€§}'
Lty and Abstract Model Language (S =

Practical Expert in Decision
: OR experts Business data Accelerate makin
Problem scenarios g
Ama | —
o -

The procedure of calling solver to solve mathematical optimization problem

Mixed-Integer Linear Program

argmin ¢ x
x

subject to Ax < b,
| < x < u,
xeZP x R"™P,

v

c € R" the objective coefficients

» A e R™*" the constraint coefficient matrix

» b e R™ the constraint right-hand-sides

» |,u e R"” the lower and upper variable bounds

» p < n integer variables

Stopping criterion:

» L = U (optimality certificate)

Branch and Bound Split the LP recursively over a non-integral variable, i.e. 3i < p | x* ¢ Z

> L = oo (infeasibility certificate) Lower bound (L): minimal among leaf nodes.
» L - U < threshold (early stopping) Upper bound (U): minimal among integral leaf nodes.

argmin € X
x

subject to Ax

Convex problem, efficient algorithms (e.g., simplex).

1
1
1
1
|
! » x* € ZP x R"7P (lucky) — solution to the original MILP
| » x* ¢ ZP x R"™P —; lower bound to the original MILP

1

1

1

Order matters: who cares and why we care

1.

“The performance of MIP solvers is subject to some unexpected variability that
appears, for example, when changing from one computing platform to another,
when permuting rows and/or columns of a model, etc.”

“This phenomenon has certainly been observed for decades and has been the
topic of an extensive literature in the artificial intelligence and SATisfiability
communities.”

"One source of performance variability is rooted in the so-called imperfect tie
breaking. Most of the decisions taken by an MIP solver are based on ordering
candidates according to scores and selecting the candidate with the best score.
This is true for cut separation and cut filtering as well as for one of the most
crucial decisions of the MIP solution process, namely, the variable to branch on at
each node."

(= =) For some problems the presolve performance is very sensitive to the order in which
o the rules are applied. Hence, an analysis of presolve would be incomplete without an
investigation of this effect for particular LP instances. Alternative orderings may be

more suitable for a problem, depending on the problem structure.

Dr. lvet Galabova [2], Developer of HIGHS

[1] Lodi, Andrea, and Andrea Tramontani. "Performance variability in mixed-integer programming.” Theory driven by influential applications. INFORMS, 2013. 1-12.
[2] Galabova, Ivet. "Presolve, crash and software engineering for HIGHS." (2023).

Motivation

An easily overlooked phenomenon: the appearing order of variables in a given LP instance
indeed affects the solver's performance. The solver takes input the model constructed by

human experts.

1.0

Value
(=

=

0.2 |

0.0
Priaml Inf. Dual Inf, # lteration

Figure: Three distinct LP instances are selected
to perform the preliminary experiment. The
significant variance of metrics shows that
solver performance is quite sensitive to the
different formulations for a given LP instance.

Tdx HPP (m=146722, n=260636, nnz=668270) WA (m= 64282, n=61000, nnz=359428) BIP (m=195, n=1083, nnz=7440)
Primal Inf. Dual Int. # lteration | Primal Inf. Dual Inf. # Iteration | Primal Inf. Dual Inf. # lteration
1 T.721295E+09 | 1.884180E+11 19408.00 311.22 1.9980E+09 14083.00 9.43 1.922493E+07 539.00
2 | 7.T20309E+09 | T.8RZ4T6E+11 19242.00) 20533 1.9790E+09 17020.00 958 L93T180E+07 486.00
3 | 7.725508E+09 | 1.869514E+11 19208.00 269.29 1.9530E+09 16495.00 938 1.916960E+07 557.00
4 | 7.764919E+09 | 1.876644E+11 19408.00 262.35 2.0620E+09 15149.00 9.47 1.932945E+07 453.00
5 | T.72697TE+09 | 1.878485E+11 19175.00 299.10 1.9080E+09 16351.00 9.37 1.91561TE+07 586.00
6 | 7.746T86E+09 | T.8T7944E+11 19266.00 281.19 1.8630E+09 14971.00 9.43 1.922493E+07 5328.00
7 | 7.746866E+09 | 1.879217E+11 19274.00 308.00 1.9630E+09 15778.00 9.22 1.706866E+07 591.00
8 | 7.72925TE+09 | 1.873669E+11 19391.00 269.86 2.1070E+09 16586.00 9.00 18801 15E+07 519.00
O | 7.T45T38E+09 | T.8T5424E+11 19203.00 296.18 2.0280E+09 14984.00 9.22 T.902Z808E+07 453.00
10 [7.727T762E+09 | 1.882426E+11 19240.00 28481 2.2290E+09 15861.00 9.05 1.674231E+07 354.00

Motivation: using machine learning technique to
automatically find better formulation for solvers.

Three challenges to introduce ML techniques:

1) How to appropriately represent an LP instance
2) What machine learning model is suitable

3) How to efficiently train above inferring model

The proposed method

Learn to Reformulate

Clustering embedding
as a sequence

Paointer
E> E>

Mew permutation
of the sequence

\

L——- update by g __________7‘/_

Original LP D
'q_ [AJ b,f} Solver

/ Reformulation \
-~
ain A%y + o+ dy Xy LI T o &
%)+ -:-Elllrl ".:_ |lI """" i Graph
T j - (=’ Neural -
o e X, 5 d i s a "‘\'- tin b N'E‘twor'k
\‘_ Lingar programming Bipartite graph A
'd Aggregation
o ﬂ |
% of] o | | foolnd o> [EEIEEIE
' 123430 Clustering embedding
Ay [' || | .ﬁ.gr.'fn
\MNode embedding splitting cluster A
2
- | Permutation
CREIEEIE] EEEIEE

//'

Critic
MNetwaork

Reformulated LP

(4',b,c")

Learning
update by L, -

* Baseline b —

Reward R —
&

—-| Solver l

Representation: The inputting LP instance
Is represented by a bipartite graph, and
then the embedding of variables is
obtained via a GNN;

Aggregation: The embedding of variables
will be further aggregated with a given
group of variable clusters

Permutation: Taking as input the previous
embeddings, a pointer network (PN) is
used to output a new permutation of
variables

Learning: The learning part interacts with
the reformulation part to update the
parameters of GNN and PN, trained with
REINFORCE algorithm.

The proposed method

4 Learning N

Critic "o update by L,
Baseline b —
————————— updatebyg ————1-—-

Original LP
—
(S
Reward R —

*Reformulated LP
{Ar’ b’ Cf} oliver

[Gradient g ‘
(————— Loss Function L, | ____ _ _/

\ 4

] ["'T| CJ ;li]

Policy

A 4

=11

the permutation of given
splitting clustering

a splitting clustering

M

i=

p(m(i)|m(< 3), {Ci 1)

i

the solving performance of the

A 4

reformulated LP instance

Reward Rl:?r! __ Baallim)

a given LP instance

ol

.| the solving performance of the

input LP instance

Optimization HOMNOPI) = Errpo, o, oy [B(|D)]

A 4

the parameterized

representation (i.e., GCN)

»

|the
(i.

parameterized policy
e., pointer network)

Experimental evaluation

Table 1: Statistical description of used dataset Table 3: Improvement of solving time (the lower, the better)
Dataset 0 n ~_NNZ by our proposed method over all instances of three datasets
BIP 195.00 £ 00.00 1083.00 £ 00.00 _ 7440.00 + 00.00 Avg Solving Time (5 Avg. Reordering —Tmprov.
WA 64301 £5151 6.1e01£00.00 3.62¢05 + 6007.11 Pataset Seen/Unscen Solver: —5 il Reformulated . Time (s) (%)
HPP l.zaf:ﬂﬁ :I: ﬁ.ﬂgffﬂ'l Q.EEE:[]E :I: 1.83(}'“5 ﬁ.ﬁ'j.f:ﬂﬂ :I: '1.29(:(]5 CLP n_{}3ﬁﬁ2 {}-{}235 I. {}{mnl I Z‘ﬁ‘. 13
Seen SCIP 0.04625 0.03453 0.00012 25.35
BIP Gurobi 0.01086 (0.00849 0.00012 21.78
CLP 001792 001355 0.00019 3139
. . : Unseen SCIP 0.04636 0.03472 0.00017 25.11
Table 2: Improvement of the iteration number (the lower, the Gurobi 0.01144 0.00939 0.00018 17 86
better) over testing instances of three datasets. CLF Ml el GG 454
. — Seen SCIP 396057 3.39302 0.00811 14.33
Dataset Solver O ﬁ:.]'g #]];L;dt.m" Taicd Improv. (%) WA Gurobi 5.21913 4.23533 0.00723 18.85
ngin clormi atc CLP 7.173890 617385 0.00689 13.09
CLP 956.32 705.10 26.27 Unseen SCIP 4.04960 320840 0.00700 18.55
BIP SCIP 6/3.08 245,533 19.04 Gurobi 431686 3.59897 0.00685 16.63
Gurobi 525.46 425.30 18.49 CLP 71.0665 63.7396 001441 1031
CLP 694557 598518 13.8 Secn SCIP 40.4433 34.2676 001719 15.27
WA T~ SCIP 1135434 U8/48] 303 Gurobi 432238 37.7647 0.01996 12.63
Gurobi “TT96285 1511035 1588 HPP CIP 700732 65.0008 (X KEE! AW
CLP 0835227 0027755 821 Unscen SCIP 407626 34.9947 0.01755 14.15
HPP ~ SCIP 0412448 82033.08 11.80 Gurobi 439299 40.0245 0.01454 8.89

Gurobt 23526.64 21656.2 .95

Experimental evaluation and conclusion

16.0
= ——— . cLp o 12
g2 — g155] g
-y by e !
224 2150 — Gurobi s10
= - — P £1as //- 2 g
] — scIP S0 i s— 5,
E20 —— Gurobi £13s /—'—/ g
1 ; : =] 213.0 g £ T
E e _g‘n.s _E' P scip
16 1.0 / Gurobi
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
Episode Episode Episode
(a) BIP (b) WA (c) HPP

Figure 3: Learning convergence and improvement of the iteration number over three datasets’ training (seen) instances. Several
findings can be pointed out: 1) the networks’ parameters can converge over the three datasets; 2) with each testing solver, our
method is effective in reducing the solving iteration number; 3) on the LP instances from WA and HPP, our method performs

slightly worse than those from BIP, which demonstrates that it is relatively harder to learn neural network parameter over the
large-scale and complex LP instances.

24
3D P
&g £22
830 20
228 2
= =18
Ezs g
§24 g 16
8 =] 314
522 — B
E £
=20 100 =12
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600

Episode Episode

(b) SCIP over BIP (c) Gurobi over BIP
Figure 4: How different number of clustering block impacts our method’s performance on BIP. Several findings can be pointed
out: 1) it can be noted that increasing the number of clustering block within a specific range will lead to an improvement in the

performance of our learning-based method; 2) it can also suffer a dramatic performance degradation if the number of clustering
blocks is too large. Similar conclusions are drawn on the other two datasets (see Figure 6 in Appendix).

Episode

(a) CLP over BIP

Take-away messages:

1) Various solvers (including commercial and open-
source) can benefits from reformulation.

Hindsight: what better formulation

the agent found

150
. —1
250 500 750 o 250 500 750 1000

{a) original LP1 from BIP (b) reformulated LP1 from BIP

o o
10000 10000
20000 20000
30000 30000
40000 40000
SDO0g 50000
H0000 &0000

0 20'00 40000 6000" o

40000 60000

20000

(e) original LP1 from WA (f) reformulated LP1 from WA

100

150
- T T T T
o 250 500 750 1000

(c) original LP2 from BIP

0000
40000 -
50000
50030 -

o 20000 40000 60000

(g) original LP2 from WA

200, . \ : .
¢ 250 SO0 750 1000

(d) reformulated LP2 from BIP

10004
20000

30000

40000 60000

[20000

(h) reformulated LP2 from WA

166 166 166 1e6
0o = naf - E = poq{ - o
e 021 - nz{ - I g
3
04 0.4 04 W
0 06 \
. 08 \ \
1o Lo A \
12 =2 b
o 1 2) 1 2] 1 3
1e6 106 1e6 106

(i) original LP1 from HPP (j) reformulated LP1 from HPP

(k) original LP2 from HPP

(1y reformulated LP2 from HPP

Figure 5: Visualization of reformulation process over BIP, WA and HPP datasets

2) Gurobi is the most robust to the varying formulation.

	幻灯片 1: Accelerating Linear Programming Solving by Exploiting the Performance Variability via Reinforcement Learning
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10

