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* Preliminary
« Order Matters: Why We Cares

« Two of Our Group’ s Research Work in Year 2022

> Accelerating Linear Programming Solving by Exploiting the Performance Variability via
Reinforcement Learning

> Learning Cut Selection for Mixed Integer Programming via Hierarchical Sequence Model
« Challenges and Outlook
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The procedure of calling solver to solve mathematical optimization problem
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Mixed-Integer Linear Program | i
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argmin ¢ x ! ! argmin  c¢'x
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subject to Ax < b, subject to Ax < b

| <x < u,

xeZP xR"P,
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c € R” the objective coefficients Convex problem, efficient algorithms (e.g., simplex).

I I
I I
i i
» A € R™*" the constraint coefficient matrix : :
» b e R™ the constraint right-hand-sides ! ! » x* € ZP x R"P (lucky) — solution to the original MILP
- | » x* ¢ ZP x R"™P —; lower bound to the original MILP
i i
I I
\

» |,u e R" the lower and upper variable bounds

» p < n integer variables

| |

Branch and Bound Split the LP recursively over a non-integral variable, i.e. 3i < p | x* ¢ Z
Stopping criterion:

» L = oc (infeasibility certificate) Lower bound (L): minimal among leaf nodes.

1
I
I
I
I
I
T . 1
» L = U (optimality certificate) :
1
i
» L - U < threshold (early stopping) Upper bound (U): minimal among integral leaf nodes. !

]
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Preliminary
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The illustration of branch-and-bound framework

5 Huawei Confidential

V2 HUAWEI



Preliminary

Parallel Scheme Presolving

Presolve: reduces the dimension of the
1 input problems

Node selection: determines which node
to solve in the B&B tree

Branching: determines which fractional

+ Reduced domain
+ Added|constraint

1
|
|
1
I i
: Domain propagation
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Processing

HOdE SEIECtion Solve LE variable to solve in the B&B tree
" Cut separation: generates corresponding
| Pricing . .
Conflict analysis ) E%::;,’;g“ constraints to shrink the search space
: A Primal heuristics: aims to find the primal
: feasible solution ASAP
1

' Solve LP: calls primal and dual simplex to

Enforce constraints

——— . -eancnea|  SOlve LP relaxation
+ Infeasible .y . i + Feasibl o o
| e e T Domain propagation: deduces the
! narrowed bound for variables and

L o e e e e e ) propagates these bounds

Solving procedure of MILP solver
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Order matters: why we care

1. "The performance of MIP solvers is subject to some unexpected variability that
appears, for example, when changing from one computing platform to another,
when permuting rows and/or columns of a model, etc”

2. "This phenomenon has certainly been observed for decades and has been the
topic of an extensive literature in the artificial intelligence and SATisfiability
communities.”

3. "One source of performance variability is rooted in the so-called imperfect tie
breaking. Most of the decisions taken by an MIP solver are based on ordering
candidates according to scores and selecting the candidate with the best score.
This is true for cut separation and cut filtering as well as for one of the most
crucial decisions of the MIP solution process, namely, the variable to branch on at
each node’”

Prof. Andrea Lodi [1]

- For some problems the presolve performance is very sensitive to the order in which
‘ )‘ the rules are applied. Hence, an analysis of presolve would be incomplete without an
investigation of this effect for particular LP instances. Alternative orderings may be
more suitable for a problem, depending on the problem structure.

-
-

Dr. Ilvet Galabova [2], Developer of HiGHS

[1] Lodi, Andrea, and Andrea Tramontani. "Performance variability in mixed-integer programming." Theory driven by influential applications. INFORMS, 2013. 1-12.
[2]GalabomapbietntiReasslve, crash and software engineering for HiGHS." (2023). &VA HUAWEI



Accelerating Linear Programming Solving by Exploiting the
Performance Variability via Reinforcement Learning[1]

Introduction

An easily overlooked phenomenon: the appearing order of variables in a given LP instance indeed affects
the solver's performance. The solver takes input the model constructed by human experts.

1.0 f I ] X

0.8 ‘ L J_’_L | |
w 0.6 [ | WA
= T\ [ BIP
- 0.4 _I_ = HPP

0.2 : | | ] : |

0.0 i

Praml Inf. Dual Int, # lteration

Figure: Three distinct LP instances are selected
to perform the preliminary experiment. The
significant variance of metrics shows that
solver performance is quite sensitive to the
different formulations for a given LP instance.

[1] Xijun Li, Qingyu Qu, Fangzhou Zhu, Jia Zeng, Mingxuan Yuan, Jie Wang: Accelerating Linear Programming Solving by Exploiting the Performance Variability via

Tdx

HPP (m=146722, n=260636, nnz=0668270)

WA (m= 64282, n=61000, nnz=359428) |

BIP (m=193, n=1083, nnz=7440)

Primal Inf. Dual Inf. # lteration | Primal Inf. Dual Inf. # lteration | Primal Inf. Dual Inf. # lteration
1 TI21295E+09 | 1.884180E+11 19408.00 311.22 1.9980E+09 | 14083.00 9.43 1.922493E+07 539.00
2| TT20300E+09 | 1.882416E+11 19242.00 20533 LOTOOE+08 | 17020.00 .58 1O371R0E+0T 486.00
3 | 7.725508E+09 | 1.869514E+11 19208.00 2609.29 1.9530E+09 | 16495.00 9.38 1.916960E+07 557.00
4 | 7.764919E+09 | 1.876644E+11 19408.00 262.35 2.0620E+09 | 15149.00 9.47 1.932945E+07 453.00
5 | 7.72697TE+09 | 1.878485E+11 19175.00 200,10 1.9080E+09 | 16351.00 9.37 1.91561TE+07 586.00
6 | 7.746786E+09 | 1.877044E+11 19266.00 281.19 1.8650E+09 | 14971.00 9.43 1.922493E+07 528.00
7 | 7.746866E+09 | 1.879217E+11 19274.00 308.00 1.9630E+08 | 153778.00 9.22 1.706866E+07 5391.00
8 | 7.729257E+09 | 1.873669E+11 19391.00 269.86 2 1070E+09 | 16586.00 9.00 1.880115E+07 519.00
O 1 7T45T38E+00 | T.875424E+11 19203.00 206.18 202Z80C+09 | T4984.00 922 1.902808E+07 453.00
10 | 7.727762E+09 | 1.882426E+11 19240.00 28481 22200E+09 | T5861.00 0.05 1.674231E+07 554.00

Motivation: using machine learning technique to
automatically find better formulation for solvers.

Three challenges to introduce ML techniques:
1) How to appropriately represent an LP instance

2) What machine learning model is suitable

3) How to efficiently train above inferring model

Reinforcement Learning. AAAI 2023 workshop on Al to Accelerate Science and Engineering

8 * Thishinathigcbhiidebéan filed a patent for Huawei.
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Proposed method: overview

O Representation: The inputting LP
instance is represented by a bipartite

Learn to Reformulate

graph, and then the embedding of

variables is obtained via a GNN / Reformulation \ e Learning

% | T aipdate by Le
. . T mternmgy O A Network [~ ®2€in¢ :
Ag.gregatlo.r‘o The embeddlng Of """"'"t"""'i'l‘ E> J ‘>(l ! I::> ____ _________ update by g ===-+ ___:
variables will be further aggregated S gy Network |
with a given group of variable clusters P— E S— o [t (] | |
I (4,b,c} |
i |
. . . % ] | Poolin wardR — |
Permutation: Taking as input the ; ol e WHH E:’EE,EEE? R
previous embeddings, a pointer \ike ambocing ity uste eformulated LP |
network (PN) is uged to output a new - + [ Permutation (A", b, c) —{soer]
permutation of variables [CEEEE o CEEOEE |
maptns | Network R — Gradient |

Learning: The learning part interacts % oo UpoRe e 7\ """ e y

with the reformulation part to update
the parameters of GNN and PN,
trained with REINFORCE algorithm.
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Proposed method: reformulation part

4 Representation

rin tyxg + o4 i, x, dy X Hyq by

'\T‘ q

ITESIL AE e Uty ,“ii.; Graph

faiky kot g S by O " | > Neural p-
|

A )+ o+ Gpp ¥y Z By d, X s N, NE’[WDI’k

Cm

L Linear programming Bipartite graph

O Representation: The inputting LP instance is represented by a bipartite graph and get representation via

10

a graph convolutional neural network (GCNN).

We adopt the same method as done in (Gasse et al. 2019)

One layer representation
of constraint

\ 4

to represent a given linear programming as a bipartite graph [ (i,5)€E

—~ Y . . . . ~ T ¢ . . v .
(G,C,E,V). Specifically. in the bipartite graph, C c R™*¢ CERJFU — fc cgk}, E : gc(cgk], ngjg ei;)
corresponds to the features of the constraints in the LP; V € \ Z
R™*4 denotes the features of the variables in the LP: and an o

) . . (i.7)€E
edge e;; € E between a constraint node ¢ and a variable node T & B (k
ALY, : ‘ _ vETI g ‘,(} (C{]V(](’--)
J if the corresponding coefficient A; ; # (. For simplicity, j viyY oo E gvic »V; 6
we just attach the value of A; ; to the corresponding edge €;;. '
Readers can refer to the used features in Appendix. [One layer representation
of variable
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Proposed method: reformulation part

h 4

g D Aggregation
2 o0 T
dEEl . - —r—
5 ol o ﬁ i :>[ Pooling ]c> MPEFAEE
: 123456 Clustering embedding
x OO A given

\I:‘_J_Dde embedding  splitting cluster

O Aggregation: The embedding of variables are aggregated with a given group of variable/constraint
clusters due to the combinatorial explosion of search space

> Splitting: For a given LP instance, the variables/constraints are split up into many disjoint
cluster. Note that variables within one cluster are subject to the order of variables in the
original LR The clustering method is not restricted. /t could be specified by human experts or
using the hyper-graph decomposition method

» Pooling function: With above splitting clusters and variable embedding, we perform the
aggregation for each cluster via pooling function

Ej — ‘P({Vr‘;‘;ﬁi - (1,-}‘)

where the pooling function that could be maximum, minimum, average, or other appropriate
functions. We still do not restrict the kind of pooling function here.

11 Huawei Confidential
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Proposed method: reformulation part

v -
4 Permutation
Pointer I:>
Clustering embedding MNetwork Mew permutation
as a sequence of the sequence
\_ T updatebyg _________ :

O Permutation: Taking as input the previous embeddings, a pointer network (PN) is used to output a
new permutation of variables
> Given an LP, we reformulate it by reordering its variables/constraints
» More specifically, we want to learn a policy that can output a better formulation for a given LP

»la splitting clustering

.-1.-!_

Reformulation policy -;H i) = [ p(r(lx(< 3).{Ci 1)
=1

_|the permutation of given

| splitting clustering
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Proposed method: learning part

\ 4

a splitting clustering

MM

. _  hM [, 2 i aM

4 Learning N Policy (wl{ﬂ_,ll-jzj} — I_,u{ﬂ{.;)lfr{ <) AC H=1)

Critic Y000 update by L, - =1

Network Baseline b — i {
date b ! the permutation of given

_________ HpaE Ry g splitting clustering
— {:{T';’al:; | the solving performance of the

T reformulated LP instance

Reward R —

> (A" b, c") a given LP instance input LP instance

|

|

:

|

|

|

| Spa(l]m)

| Reward R(xfl) =1 &=

I mll

|

I L3
et Sotver i | the solving performance of the

i

|

i

|

|

[ Gradient g 17 Optimization HONOpl) = Errpeo. 0, (1) B(7|0)]

——————— Loss Function L, | _____ A 4 . - -

K /, the parameterized ,|the parameterized policy
representation (i.e., GCN) (i.e., pointer network)
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Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Experimental evaluation: benchmark

- Datasets: three sets of Mixed Integer Linear Programming (MILP) problems. All datasets are
scenario specific.
« Two of them, Balanced Item Placement (BIP) and Workload Apportionment (WA), are from
NeurlPS 2021 ML4CO competition
« The third one is obtained from a real-life production planning scenario called HPP.
« Testing solver: Gurobi (commercial), SCIP and CLP (open-source)
« Maetrics: we measure the improvement gained from reformulation
« Solving time
* Iteration number of the search process

Table 1: Statistical description of used dataset
Dataset T Tl NNZ
BIP 195.00 £ 00.00 1083.00 £00.00  7440.00 £ 00.00
WA 6.13c01 + 54.51 6.1¢01 £00.00  3.62¢05 + 6007.11
HPP  1.25¢06 £ 6.93¢01  2.66¢06 + 1.83¢05  6.61¢06 + 1.29¢05

14 Huawei Confidential @@ H UAWEI



Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Experimental evaluation: numerical results

Table 2: Improvement of the iteration number (the lower, the ~ Table 3: Improvement of solving time (the lower, the better)

better) over testing instances of three datasets. by our proposed method over all instances of three datasets
o - Avg. # lteration o e . . Ave. Solving Time (s) Avg. Reordening Imiprow.

Dataset  Solver Original  Reformulated Improv. (%} Datitt  Sefufifiseen  Solver Onginal  Reformulated Time (s) (%)

CLP 056.32 705.10 26.27 CLP 003862 (L2851 (L0001 1 2618

BIP SCIP 6358 345.33 19,04 Secn SCIP  0.04625 0.03453 0.00012 2535

Curobi 32546 425.30 1 5.4 BIP Gurobit  0L.01086 (LHE4S (00012 21TR

CLP oud3 .37 598518 13.8 CLP 001792 (L0355 00019 24.39

WA SCIP 11354 34 EEYEEY 13.03 Unscen SCIP  0.0Md636 03.03472 000017 25.11

Gurobi — 1/962.85 15110.35 15.88 Gurobi 0001144 (939 000018 | 7. 86

CLP 9835227 ON277.55 5721 CLF 674059 576085 (100655 [454

HFP SCIP  9di74.4% PRI RN 11.80 Seen SCIF 3.96057 3.39302 000811 14.33

Gurobi. 2357664 165077 705 WA Gurobi  5.21913 423533 0.00723 [8.85

) CLP T. 17389 A 1 73Rk5 (.00689 [3.94

Unscen SCIP  4.04960 3. 29840 Q00704 18.55

Gurobr 431686 359897 000685 l6.63

Take-away messages‘ CLP T1.0665 63.73096 001441 [0.31

1 1 1 1 Secn SCIP  40.4433 342676 001719 1527

1) Var|OUS SOIVerS (InC|Ud|ng Co,mmerCIal HPP Gurobn 432238 37. 7647 (.019% [2.63

and open-source) can benefits from CLP 700742 650208 001334 713

. Unscen SCIP 40,7626 34.9947 001755 14.15

reformulation. Gurobi 43.9299  40.0245 0.01454 %.89

2) Gurobi is the most robust to the varying
formulation.

15 Huawei Confidential @@ H UAWEI



Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Hindsight: what better formulation the agent found

a

250 500 750 1000

(a) original LP1 from BIP (b) reformulated LP1 from BIP  (c) original LP2 from BIP (d) reformulated LP2 from BIP

10000

00000

50000

60000

i3 40000 60000 o 20000 40000 &0000

(e) original LP1 from WA (f) reformulated LP1 from WA (g) original LP2 from WA (h) reformulated LP2 from WA

1es 106
oo - oo - - a0 = oo - - .
0z [—— 02 a' :‘: - ey 0.2 N —— nz{ ¢ K= e Ny
o4 0.4 \ 04 04 A\ N
06 a6 \ \ 06 o6 N\
) o8 \ \ 0.8 o8 \ \
10 . 104 . 1o 10 AN \
- 2] 12 1z 5
o 1 2 0 1 H o 1 2 ] 1 2
Les 6 1e6 126

(i) original LP1 from HPP  (j) reformulated LP1 from HPP (k) original LP2 from HPP (1) reformulated LP2 from HPP

Figure 5: Visualization of reformulation process over BIP, WA and HPP datasets

16 Huawei Confidential

1)

2)

Efficacy: our proposed reformulation method
captures the characteristics of LP instances
originating from different scenarios.

Different captured patterns on various
dataset: The reformulation is relatively stable
when the original LP instances are highly similar.
All the original LP instances of BIP have the
same number of constraints and variables,
which is only different in the value of
coefficients. because the corresponding original
LP instances differ in not only the value of
coefficients but also the number of constraints
and variables.

V2 HUAWEI



Accelerating Linear Programming Solving by Exploiting
the Performance Variability via Reinforcement Learning

Summary of this work

 In this paper, we propose a reinforcement learning-based reformulation method to accelerate the
linear programming solving. To the best of our knowledge, this is the first work that exploits the
performance variability of modern solvers via machine learning techniques to gain performance.

« The idea of using machine learning techniques to exploit or to reduce the performance variability of
mathematical programming solvers can be extended in many directions.
« One can further learn the modeling experience or gain the modeling tricks from the

reformulation derived from the neural networks.
« One can use the proposed method to decide the better ordering rules in various decision-

making components in solver such as pricing, variable selection, cut separation, etc.
«  We believe that this work can inspire the future research to better exploit the performance

variability of solvers to improve the solvers.

17 Huawei Confidential @@ H UAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

* Mixed Integer Programming
formulates a wide range of
important real-world applications

W Node Selection +~—

* Cutting planes are important for
improving the efficiency of solving
MILPs

Node Presolve

" LP Relaxation J
I
|

Cutting Planes . .
T __ C e Cut selection aims to select a
N e proper subset of candidate cuts
Branching '— Figure 2.3. A cutting plane that separates the fractional LP solution & from the convex hull Q;
of integer points of Q.
Pipeline of solving MILPs Example of cutting planes

[1] Xijun Li*, Zhihai Wang*, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, Feng Wu: Learning Cut Selection for Mixed-Integer Linear P, ( )a m|n via
WBierarcHits SCGURSIER Model. ICLR 2023 W5 WEI

* This method has been filed a patent for Huawei.



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Introduction: cut selection

«  While many classes of cutting-planes are at the disposal of integer programming solvers, our scientific
understanding is far from complete with regards to cutting-plane selection, i.e., the task of selecting a portfolio
of cutting-planes to be added to the LP relaxation at a given node of the branch-and-bound tree [1].

« The large number of cutting planes generated by these separators, however, can pose a computational problem.
Therefore, a sophisticated cut management is indispensable [2].

« Adding all of these cuts to the LP does not yield the best overall performance. Therefore, a selection criterion is
needed in order to identify a “good” subset of the generated cuts [3].

UniCuts Applied DelPool DellLP

s P The task of selecting a

2o T A I portfolio of cutting-planes
r is a NP-hard problem !

Snapshot of OptVerse Solver ‘s Log

Cut selection: trade-off between tightening LP relaxations and computational burden of cuts

[1] Wesselmann, Franz, and U. Stuhl. "Implementing cutting plane management and selection techniques." Technical Report. University of Padegborn, 2012.
12] Deysanitamiidentahd Marco Molinaro. "Theoretical challenges towards cutting-plane selection.” Mathematical Programming 170 (2018): ZSQQGH UAWEI

[3] Achterberg, Tobias. Constraint integer programming. Diss. 2007.



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Limitations of existing methods: heuristics

1. However, assuming that MILPs come from a specific distribution,
there has been a recent surge in research related to statistical
approaches to learning such heuristics.

2. From the CO point of view, machine learning can help improve
an algorithm on a distribution of problem instances in two ways.
On the one side, ...... On the other side, ......

3. Indeed, learning mechanisms able to discover structural
properties of seemingly equivalent components of an
algorithm would certainly be very useful

Machine learning offers a promising approach to learn more
effective heuristics from MILPs collected from specific applications

Prof. Andrea Lodi [1]

[1] Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost. "Machine learning for combinatorial optimization: a methodological tour d" horizon." European

onal R h 290.2 (2021): 405-421.
20 JOﬁggﬁéi%ig gggﬁgf/ona esearch 290.2 (2021): 405 &m HUAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Limitations of existing methods: learning-based

alx<p; — asz < p> the optimal solution the optimal solution
cutl cut? of the 01"18{‘131 LpP of the tightened LP

scorel: 0.8 score?2:0.78 score3:0.5
! f !
MLP #

T ! !

alx < p, alx < B, alx < B
cutl cut?2 cut3

cut?
cutl

the initial basis

=~
-
—

llustration of Score-based policy

« Neglecting learning how many cuts to select
« Order of selected cuts is important for the solving efficiency
« Do not take into account the interaction among cuts

21 Huawei Confidential @@ H UAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Three key problems in cut selection

Order (different datasets) Order (different ratios) = Ratio (different datasets) = Ratio (different instances)
5,1.00 5 1.0 ——~—
D5 stdev: 1.3 (62%} ratio:0.4 stdev: 0.08 (6%)—— +§095 gog '_,/ 4
D4 —stdev: 0.12 (6.8%) . stdev: 0.23 (20%) | ‘= 0.90 508 | / : A
) rat|0.0.6 s o 085 a 0? III \ / \
D3 stdev: 0.18 (16%) _ stdeva0:22 (18%) | © 0.80 “- 506 9 VoY% /\
D2 B —stdev: 0.17 (15%) ratio:08 B075 o imare 805 e N[V
D1 stdev: 0.11 (12%) ratio:1.0 14%) | S 0.70 -2 £ 0.4 ] fonmas
| \ . . 5 . . ) 6 0.65 E 0.3 .I Anon 5131
0.0 05 1.0 15 2.0 2.5 3.0 35 0.002040608101214 =2 0.1 0.2 03 0.4 05 0.6 0.7 08 =2 01 02 03 04 05 06 0.7 0.8
primal-dual gap integral * primal-dual gap integral ** Ratio Ratio
(@) Evaluate RandomAll on (b) Evaluate RandomNv on (c) Evaluate NV with different (d) Evaluate NV with different
five different datasets. MIPLIB mixed neos. ratios on four datasets. ratios on Anonymous.

Fig. 1: (a)-(b) We design two cut selection heuristics, namely RandomAll and RandomNYV (see Section4.1|for details), which
both add the same subset of cuts in random order for a given MILP. The results in (a) and (b) show that adding the same
selected cuts in different order leads to variable overall solver performance. (c)-(d) We use the Normalized Violation (NV)
heuristics in the following experiments. The results in (c) show that the performance of NV varies widely with the
given ratios across different datasets. The results in (d) show that the performance of NV varies widely with the given
ratios across different instances from the Anonymous dataset.

(P1) Which cuts should be preferred (P2) How many cuts to select (P3) What order to prefer (we first observe)

Order and ratio of selected cuts significantly impact the efficiency of solving MILPs
22 Huawei Confidential gré HUAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Proposed method: overview

O Reinforcement Learnlng Formulation 1. Environment 2. Agent: hierarchical sequence model
» Formulate MILP solver as the environment : @x<# | f states; ||
| I I :
. . | | 1 |
> Formulate cut selection policy as the agent | states,|| | Lstm :
. . . ' akx < By : : encoder :
» Time/Primal-dual gap integral as reward | generated curs  1°0tuTe : .
. . : vectors I MLP higher-level :
O Hierarchical Sequence Model : MILP ratiok, Policy, |
. . | solver ! | &
> We first formulate cut selection as a M i )
rewardr; rion d* :
« 4y ymmemmmemeeTeeeneeaa actiona; ' 1234586 |,
sequence to sequence learning problem . — | ‘i . i
|data: (s;, ki, a,T; *)] | : pointer :
» Propose Hierarchical Sequence Model to | iaus: : | | metwork
: {51 +=aVg,J(61.67) |, : i
model the agent | 1o, +=av,16,.6,) || : |
. . . e e N—— ! 1\ lower-level policy Tg, i
O Training Algorithm 3. Trainer e ’

» We derive a hierarchical policy gradient

23 Huawei Confidential @@ H UAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Proposed method: Markov decision process formulation

» State space S: We define each state by a sequence of thirteen-dimensional feature vectors (see
Appendix F.1).
Action space A: All the ordered subsets of the candidate cuts
Reward function r: Solving time/Primal-dual gap integral/Dual bound improvement
Transition function f: A deterministic mapping from the current state and action to the next state
The terminal state. There is no standard and unified criterion to determine when to terminate the cut
separation procedure.

» The number of cut separation rounds is a hyperparameter in MILP solvers.

» We set the cut separation rounds as one and add cuts at the root node in this paper.

> As a result, the formulation is a contextual bandit.

YV VYV

state: s
reward: r

’ action <

reward
agent

|

action: a deep neural network state

environment

| environment

24 Huawei Confidential @@ H UAWEI



Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Proposed method: cut selection policy

» Cut selection policy: n: S —» P(A4), where P(A) denotes the probability distribution
over the action space
» Tackle (P1)-(P3) simultaneously
> Exploration and differentiability

> Directly learning such policies is challenging
> the cardinality of the action space can be extremely large due to its
combinatorial structure
> the length and max length of actions are variable across different MILPs

scores number order

- - E—— E—— E—— - S - - AN EEE W O S S O - - am - o o - O O O O .

(P1) Which cuts to prefer (P2) How many cuts to select (P3) What order of selected cuts
to prefer (Our observation)
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Proposed method: hierarchical sequence model

26
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state s

LSTM
encoder

MLP higher-level
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« The higher-level policy #":S - P([0,1])

Model the higher-level policy as a
tanh-Gaussian

An LSTM encoder to encode the input
cuts

A MLP to predict the mean and
variance of the Gaussian

e o o o e o e e e e .

—————————————————————————————————————————————————
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lower-level policy 7y,
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|
|
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! :
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|
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|
|

« The lower-level policy ©': S x
[0,1] - P(4)

Model the lower-level policy as a
Sequence to Sequence model
The number of candidate cuts
varies on different instances

A pointer network to select an
ordered subset
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Proposed method: hierarchical policy gradient

Optimization
J(ﬁ") = ]Esmpjﬂ.kmﬂﬂ{*|3) [T(S; A )]1 objective

Proposition 1. Given the cut selection policy wg(ak|s) = Eporr (4 [7p, (ax|s, k)] and the training
1
objective (3)), the hierarchical policy gradient takes the form of

Vo, J([01,02]) = Eyp bt (1s) [Vo, log(mg, (k 1) Eq,mrt_ (15,0 [7(8, ax)]];
Vo, J([01,62]) = Esmp,kwﬂgl(.|3),ak~ﬂéz(.|3,k) [V, log ﬂ'é.z (ak|s, k)r(s,ar)].
Hierarchical policy gradient

« HEM leverages the hierarchical structure of the cut selection task, which is
important for efficient exploration in complex decision-making tasks

«  We train HEM via gradient-based algorithms, which is sample efficient
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Experimental evaluation: benchmark

« Datasets: nine MILP benchmarks
« Easy: Set Covering, Maximum Independent Set, Knapsack (synthetic)
« Medium: MIK (knapsack constraints), CORLAT (a real dataset used for the construction of a wildlife
corridor)
« Hard: Load balancing (Google), Anonymous (a large-scale industrial application), MIPLIB 2017
« Baselines
five widely used human-designed cut selection rules
« NoCuts, Random, Normalized Violation (NV), Efficacy (Eff), and Default
 a state-of-the-art (SOTA) learning-based method, score-based policy (SBP)
Metrics
Time: solving time
PD integral: Primal-dual gap integral
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Experimental evaluation: significantly improves the efficiency

TABLE 2: Policy evaluation on easy, medium, and hard datasets. The best performance are marked in bold. For all datasets,
the results show that HEM significantly outperforms the baselines in terms of solving time and primal-dual gap integral.

Easy: Set Covering (n = 1000, m = 500)

Easy: Max Independent Set (n = 500, m = 1953)

Easy: Multiple Knapsack (n = 720, m = 72)

Method Time(s) | Improvement (time, %) T PD integral | Time(s) | Improvement (time, %) T PD integral | Time(s) | Improvement (time, %)+ PD integral |
NoCuts 6.31 (4.61) NA 56.99 (38.89)  8.78 (6.66) NA 7131 (51.74)  9.88 (22.24) NA 16.41 (14.16)
Default 4.41 (5.12) 29.90 55.63 (42.21)  3.88 (5.04) 55.80 29.44 (35.27)  9.90 (22.24) -0.20 16.46 (14.25)
Random 5.74 (5.19) 8.90 67.08 (46.58) 6.50 (7.09) 26.00 52.46 (53.10) 13.10 (35.51) -32.60 20.00 (25.14)
NV 9.86 (5.43) -56.50 99.77 (53.12)  7.84 (5.54) 10.70 61.60 (43.95)  13.04 (36.91) -32.00 21.75 (24.71)
Eff 9.65 (5.45) -53.20 95.66 (51.71)  7.80 (5.11) 11.10 61.04 (41.88)  9.99 (19.02) -1.10 20.49 (22.11)
SBP 1.91 (0.36) 69.60 38.96 (8.66)  2.43 (5.55) 72.30 21.99 (40.86)  7.74 (12.36) 21.60 16.45 (16.62)
HEM (Ours) 1.85 (0.31) 70.60 37.92 (8.46) 1.76 (3.69) 80.00 16.01 (26.21) 6.13 (9.61) 38.00 13.63 (9.63)
[ Medium: MIK (n = 413, m = 346) Medium: Corlat (n = 466, m = 486) Hard: Load Balancing (n = 61000, m = 64304) ]
. R . Improvement R . Improvement . . Improvement 1
Method Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %)
NoCuts 300.01 (0.009) 2355.87 (996.08) NA 103.30 (128.14) 2818.40 (5908.31) NA 300.00 (0.12) 14853.77 (951.42) NA
Default 179.62 (122.36) 844 .40 (924.30) 64.10 75.20 (120.30) 2412.09 (5892.88) 14.40 300.00 (0.06) 9589.19 (1012.95) 35.40
Random 289.86 (28.90) 2036.80 (933.17) 13.50 84.18 (124.34) 2501.98 (6031.43) 11.20 300.00 (0.09)  13621.20 (1162.02) 8.30
NV 299.76 (1.32) 2542.67 ( 529.49) -7.90 90.26 (128.33) 3075.70 (7029.55) -9.10 300.00 (0.05) 13933.88 (971.10) 6.20
Eff 298.48 (5.84) 2416.57 (642.41) -2.60 104.38 (131.61) 3155.03 (7039.99) -11.90 300.00 (0.07) 13913.07 (969.95) 6.30
SBP 286.07 (41.81 2053.30 (740.11 12535.30 (741.43

HEM(Ours)

176.12 (125.18)

785.04 (790.38)

58.31 (110.51)

1079.99 (2653.14)

300.00 (0.04)

9496.42 (1018.35)

Hard: Anonymous (n = 37881, m = 49603)

Hard: MIPLIB mixed neos (n = 6958, m = 5660)

Hard: MIPLIB mixed supportcase (n = 19766, m = 19910)

Improvement T

Improvement T

) . X . ) . Improvement T
Method Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %)
NoCuts 246.22 (94.90) 18297.30 (9769.42) NA 253.65 (80.29) 14652.29 (12523.37) NA 170.00 (131.60) 992796 (11334.07) NA
Default 24402 (97.72) 17407.01 (9736.19) 490 256.58 (76.05) 14444 05 (12347.09) 1.42 164.61 (135.82) 9672.34 (10668.24) 257
Random 243.49 (98.21) 16850.89 (10227.87) 7.80 255.88 (76.65) 14006.48 (12698.76) 441 165.88 (134.40) 10034.70 (11052.73) -1.07

NV 242.01 (98.68) 16873.66 (9711.16) 7.80 263.81 (p4.10) 14379.05 (12306.35) 1.86 161.67 (131.43) 8967.00 (9690.30) 9.68
Eff 244 .94 (93.47) 17137.87 (9456.34) 6.30 260.53 (p8.54) 14021.74 (12859.41) 4.30 167.35 (134.99) 9941.55 (10943.48) -0.14
SEP 2. 7 25 37
[ HEM(Ours) 241.68 (97.23) 16077.15 (9108.21) 12.10 248.66 (89.46) 8678.76 (12337.00) 40.77 162.96 (138.21) 6874.80 (6729.97) 30.75 ]
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Experimental evaluation: ablation studies
Table 2: Comparison between HEM and HEM without the higher-level model.

Easy: Maximum Independent Set (n = 500, m = 1953)

Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)

Improvement | Improvement 1 Improvement T

Method Time(s) | (Time, %) PD integral | Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %)
NoCuts 8.78 (6.66) NA 7131 (51.74) 103.30 (128.14)  2818.40 (5908.31) NA 253.65(80.29)  14652.29 (12523.37) NA
Default 3.88 (5.04) 55.81 2944 (35.27) 75.20 (120.30)  2412.09 (5892.88) 14.42 256.58 (76.05)  14444.05 (12347.09) 1.42
SBP 2.43(5.55) 72.32 21.99 (40.86) 70.41(122.17)  2023.87 (5085.96) 28.19 256.48 (78.59)  13531.00 (12898.22) 7.65
HEM w/o H | 1.88 (4.20) 78.59 16.70 (28.15) 63.14 (115.26)  1939.08 (5484.83) 31.20 249.21 (88.09) 13614.29 (12914.76) 7.08
HEM (Ours) | 1.76 (3.69) 79.95 16.01 (26.21) 58.31 (110.51)  1079.99 (2653.14) 61.68 248.66 (89.46)  8678.76 (12337.00) 40.77
Each component of HEM is important for the solving efficiency.
Table 3: Comparison between HEM, HEM-ratio, and HEM-ratio-order.
Easy: Maximum Independent Set (n = 500, m = 1953) Medium: Corlat (n = 466, m = 486) Hard: MIPLIB mixed neos (n = 6958, m = 5660)
. Improvement T . . . Improvement 1 . . Improvement 1
Method Time(s) | (Time, %) PD integral | Time(s) | PD integral | (PD integral, %) Time(s) | PD integral | (PD integral, %)
NoCuts 8.78 (6.66) NA 71.31 (51.74) 103.30 (128.14) 2818.40 (5908.31) NA 253.65 (80.29) 14652.29 (12523.37) NA
Detault 3.88 (5.04) 55.81 29.44 (35.27) 75.20 (120.30)  2412.09 (5892.88) 14.42 256.58 (76.05) 14444.05 (12347.09) 1.42
SBP 2.43 (5.55) 72.32 21.99 (40.86) 70.41 (122.17)  2023.87 (5085.96) 28.19 256.48 (78.59) 13531.00 (12898.22) 7.65
HEM-ratio-order| 2.30 (5.18) 73.80 21.19 (38.52) 70.94 (122.93) 1416.66 (3380.10) 49.74 24599 (93.67) 14026.75 (12683.60) 427
HEM-ratio 2.26 (5.00) 74.26 20.82 (37.81) 67.27 (117.01)  1251.60 (2869.87) 55.59 244.87 (95.56) 13659.93 (12900.59) 6.77
HEM (Ours) 1.76 (3.69) 79.95 16.01 (26.21) 58.31 (110.51)  1079.99 (2653.14) 61.68 248.66 (89.46) 8678.76 (12337.00) 40.77
Tackling (P1)-(P3) is important for the solving efficiency
30 Huawei Confidential
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Experimental evaluation: generalize to instances larger than training data

TABLE 8: Evaluate the generalization ability of HEM on Set
Covering and Maximum Independent Set.

Set Covering (n = 1000, m = 1000, 2x)

Set Covering (n = 1000, m = 20}, 4x)

. ] Improvement 1 . i ] Improvement 1 .
Method Time(s) | (time, %) PD integral .| Timeis) | (timne, %) P integral .|
MoCuts B2.69 (V8.2T) MNA 6H09.43 (524.92) 28444 (48.70) NA 321534 (1019.47)
Default 61.01 (78.12) 26.22 494 A3 (345.70) 14969 | 141.92) 4757 1776.22 (1651.15)
Random 6444 (73.98) 200 520054 (489.52)  208.12 {131.52) 26.53 2528.36 (1675.66)
NW 92.05 (80.11) =11.32 72553 (341.68) 286.10 (45.47) -[1.58 342246 (1024.19)
Eff 9232 (79.33) <1154 73372 (335.60) 28620 (45.04) =142 3437.06 (1043 44)
SBP 3.52 (1.38) 95.74 G289 (25.83) 762 (6.45) 97.32 256,79 (145.92)
HEM (Churs) 3.33 (0.47) 95.97 59.24 (14.26) TAD (5.03) 97.40 250.83 (131.43)
Maximum Independent Set (n = 1000, v = 3046, dx)  Maximum Independent Set (n = 5940, m = 1500, 9:x)
e 1 . - 1 y .
Method Timefs) | mp{:‘jr.;:rnﬂ:;‘lt T PD integral | lime(s) | m]?:inr;:fnﬁ,frr T P integral |
MoCuts 170006 (10061 ) MA E74.45 (522.29) 300,00 () MNA 201993 (353.27)
Default 42 .40 (76.00) 48.72 198.61 (331.20)  111.18 (144.13) 60.91 616.46 (798.94)
Random 11825 (109.05) e =AL 57433 (516.11) 24513 (115.80) 13.82 1562200 (793.09)
NV 16030 (101.41) -3 HA TEE0E (493.24) 209 97 (0.49) -5.46 1922 52 {349.67)
Eff 158.75 (100.40) 9198 779.63 (493.05) 299.45 (3.77) 5.28 1921.61 (361.26)
SBP 50.55 (89.14) 3887 253.81 (426.94)  108.42 (143.68) 6188 680,41 (903.88)
HEM {Chars) 3534 167.91) 57.26 160.56 (282.03) 108.02 (143.02) 6202 570.48 (7el.65)
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Learning Cut Selection for Mixed Integer

Programming via Hierarchical Sequence Model

Evaluation on Huawei production planning and order matching problems

TABLE 9: Evaluation on Huawei production planning and order matching problems.

Production planning (n = 3582.25, m = 5040.42)

Order matching (n = 67839.68, m = 31364.84)

. Improvement 1 : Improvement 7 . Improvement 1 . Improvementt

Method Time (s) | (Time, %) PD integral | (PD integral, %) Time (s) | (Time, %) PD integral | (PD integral, %)
NoCuts 278.79 (231.02) NA 17866.01 (21309.85) NA 248.42 (287.29) NA 403.41 (345.51) NA
Default 296.12 (246.25) -6.22 17703.39 (21330.40) 091 129.34 (224.24) 47.93 395.80 (341.23) 1.89
Random 280.18 (237.09) -0.50 18120.21 (21660.01) -1.42 95.76 (202.23) 61.45 406.73 (348.30) -0.82
NV 259.48 (227.81) 6.93 17295.18 (21860.07) 3.20 245.61 (282.04) 1.13 406.69 (347.72) -0.81
Eff 263.60 (229.24) 5.45 16636.52 (21322.89) 6.88 243.30 (276.65) 2.06 417.71 (360.13) -3.54
SBP 276.61 (235.84) 0.78 16952.85 (21386.07) 5.11 44.14 (148.60) 82.23 379.23 (326.86) 5.99
HEM (Ours)  241.77 (229.97) 13.28 15751.08 (20683.53) 11.84 43.88 (148.66) 82.34 368.51 (309.02) 8.65

Two real applications, around 10% improvement on average

Maximum Independent Set

r"-.
0025 - SEP

' - .
0.015 i “~~._ HEM-ratio
1 e

« Visualize the diversity of selected cuts

R S, + HEM selects much more diverse cuts that
e i can well complement each other nicely
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Learning Cut Selection for Mixed Integer
Programming via Hierarchical Sequence Model

Summary of this work

33

We observe from extensive empirical results that the order of selected cuts has a
significant impact on the efficiency of solving MILPs.

To the best of our knowledge, our proposed HEM is the first method that is able to tackle
(P1)-(P3) in cut selection simultaneously from a data-driven perspective.

We propose to formulate the cut selection task as a sequence to sequence learning
problem, which not only can capture the underlying order information, but also well
captures the interaction among cuts to select cuts that complement each other nicely.

Extensive experiments demonstrate that HEM achieves significant improvements over

competitive baselines on challenging MILP problems, including some benchmarks from
MIPLIB 2017 and large-scale real-world production planning problems.
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Challenges and outlook: from learning to game

Training
Dataset
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I Challenge 2 J

Modules in MIP: Too Isolated Training

Variable Node Cut
Selection Selection Selection
¥ s 2 ¥

Representation A Representation B Representation C

Policy A Policy B

¥

Unified Representation & Joint Training

Policy C

Representation Module A
. Module B
Policy Module C

Different modules depend on
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ML for MIP: Limit Training distributions
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Improving Generalization on Testing Dataset

Training Distributions Training Distributions

Testing Distributions

Distributional S|
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Unable to perform well on a large

range of unseen distributions
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[Solver] Al Solver with Automatic Algorithmic Reasoning
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https://www.chaspark.com/#/questions/828669011084787712?sub=828669011097370624
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Mathematical programming solver, which is a very important tool for solving optimization problems, is widely used in numerous

fields, such as chip design, autonomous driving, resource scheduling, and supply chain optimization.

Solving optimization problems in reality usually consists of two parts: modeling and solving. Optimizing both parts requires the

experience of experts and a lot of human effort. Modeling requires a good understanding of the background of the optimization

problems — this is a prerequisite for building a model that the business needs. Solving requires a deep understanding of the
optimization algorithm and lots of solving policies for different problem structures so that the solver can achieve fast and accurate
results in many scenarios.

Generally, two layers of policies will help optimize the solver performance:

+ Outer policy [1]: Based on the structures of domain-specific problems, experts select a group of optimal parameters out of
massive hyperparameters and input them into the solver, or the solver developers set a group of good default parameters out of
expert experience.

= Inner policy: The solver developers translate expert experience into the following work in order to improve solver stability and
performance:

v Design an algorithm to discover solver-friendly model structures (such as model rearrangement [3, 4] and massive structure
mining).
v Design and reason efficient solving policies manually [2] (e.g., branch variable selection and cutting plane selection).

Compared with the outer policy, research on the inner policy is still in its infancy. With the abundant data accumulated in

enterprises, we can use Al technologies to implement automatic algorithm reasoning of the solver's inner policy, thus reducing
dependency on expert experience and enhancing the solver's competitiveness.

35 Huawei Confidential

Technical Challenges

Solver-friendly model structure discovery algorithms:

v Low automation rate: Structure analysis depends heavily on optimization experts' understanding of the problem
and cannot be adaptively implemented by a solver.

¥ Non-solver-friendly: Structure discovery algorithms do not perform joint optimization based on solver
performance.

Automatic design and reasoning of solving policies:

¥ High cost of designing new solving policies: Designing new solving policies requires extensive theoretical
knowledge, and once designed, the policies cannot be automatically applied to other problems.

¥ Joint optimization of multiple solving policies: Considering the mutual influence between different policies in
the solver, the optimal performance can only be achieved through joint optimization.

¥ Poor generalizability: It is difficult to obtain a common solving policy by training different types of models.

Current Scenario & Achievements

Manual structure discovery: In applications such as supply chain production planning and supply network
optimization, manually designing structure mining methods based on the production hierarchy or period can improve
the solving efficiency by 50%. However, this requires x person-months of design of a structure discovery algorithm,
resulting in high costs.

Single-module policy learning: In the current mixed integer programming (MIP) solver, technologies like imitation
learning and reinforcement learning are applied in key performance modules (e.g., branch variable selection, cutting
plane generation and selection, and pre-solving). Compared with the default solver rules, these technologies have
significantly improved the performance of policy learning. When it comes to industrial problems, the average
performance improvement even exceeds 20%. However, multi-module joint learning is yet to be optimized.

Technical Requirements

Design an Al solver that features automatic algorithmic reasoning. Compared with the default policies of the traditional
mathematical programming solver (OptVerse Al Solver or SCIP), the solving time on the given dataset (MIPLIB2017
or Huawei-designated) must be reduced by 30%.

MIPLIB 2017:

[1] https:/iwww.chaspark.net/#/questions/7167056707658588167sub=716707674204524546

[2] Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.

[3] Lodi, Andrea, and Andrea Tramontani. "Performance variability in mixed-integer programming." Theory driven by influential applications. INFORMS, 2013.
1-12

[4] Xjjun Li, Qingyu Qu, Fangzhou Zhu, Jia Zeng, Mingxuan Yuan, Jie Wang: Accelerating Linear Programming Solving by Exploiting the Performance
Variability via Reinforcement Learning. AAAI 2023 workshop on Al to Accelerate Science and Engineering
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E I You can find more technical details on https:/xijunlee.github.io/
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