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1 Parameter settings

The recommended parameters and hyperparameters of different DRL methods are listed in below tables.

Table 1: Hyperparameters used in DRL algorithms

Hyperparameter DGN & ST-DDGN DQN & AC

# attention layers 2 -
# attention heads 8 -

NE (# vehicles < 50) 3 -
NE (# vehicles ≥ 50) 10 -

# neurons of layers in MLP (initial) (512, 128) (1024,256,1)
# neurons of layers in MLP (final) (64,1) -

activation ReLu
initializer random normal

Table 2: Parameter setting in policy training

Parameter Recommended value

discount factor (γ) 0.95
instant reward factor (α) 0.01
cost of using a vehicle (µ) 300

operation cost per kilometers (δ) 0.8
updating period of target network (T ) 36

learning rate 10−4

batch size 64
# training episodes (maxEpisode) 700

capacity of replay memory 105

greedy factor (ε) 0.95
optimizer Adam

gradient clipping parameter (clipnorm) 1

2 Mathematical Model of PDP

The static version of DPDP can be defined on a complete directed graph G = (N,A), where N = W ∪P ∪D
is the set of nodes and A = {(i, j)|i, j ∈ N} is the set of arcs. W = {wi|i = 1, ...,m} is the set of all depots.
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For each depot, Kwi denotes the set of vehicles starting from depot wi ∈W , of which each vehicle starts from
depot wi and must return to the depot at the end of its path. P = {1, 2, ..., n} and D = {n+ 1, n+ 2, ..., 2n}
represents the sets of pickup and delivery nodes respectively. An arc (i, j) denotes the directed connection
from node i to node j. Here each delivery order oi is associated with an earliest time tie and a latest time til
for vehicle to serve, a pickup node i ∈ P , a delivery node (n+ i) ∈ D and amount of cargoes to be delivered
qi where qi > 0 if i ∈ P and qi = −qi−n if i ∈ D. Let si denote the service (loading or unloading) duration
at node i, with si > 0 if i ∈ P ∪ D and si = 0 if i ∈ W . Each node i ∈ P ∪ D is associated with a time
window [ei, li], where ei and li respectively represent the earliest and latest time at which the service for
node i must begin. Intuitively, both ei and li are related to tie and til, where tie = ei ≤ li = til always holds
for node i ∈ P ∪D. A fleet of K homogeneous vehicles with maximum loading capacity Q is available. A
non-negative transportation distance distance di,j and a non-negative travel time ti,j are associated with arc
(i, j) ∈ A. To minimize the total transportation cost, the transportation distance of each arc leaving from
depots, i.e., arc (w, i) such that w ∈W, i ∈ P , is set to be large [1]. M is a very large constant. Besides, the
triangle inequality is assumed to be respected for both travel distances and times. The decision variables
are introduced as follows. For each arc (i, j) and vehicle k, xkij denotes a binary variable equal to 1 if vehicle

k travels from node i to node j otherwise 0. For each node i ∈ N and each vehicle k ∈ K, let T k
i represent

the time vehicle k begins service at node i, and let Qk
i be the load of vehicle k when leaving from node i.

The whole mathematical model is given below:
Objective

min F (x) =
∑
k∈K

∑
i∈N

∑
j∈N

dij × xkij (1)

s.t. ∑
k∈K

∑
j∈P∪D,j 6=i

xkij = 1 ∀i ∈ P (2)

∑
k∈K

∑
j∈P∪D,j 6=i

xkji = 1 ∀i ∈ D (3)

∑
j∈N,j 6=i

xkji −
∑

j∈N,j 6=i

xkij = 0 ∀i ∈ N, ∀k ∈ K (4)

∑
i∈N,i6=w

xkw,i = 0 ∀k /∈ Kw (5)

∑
j∈P∪D,j 6=i

xki,j −
∑

j∈P∪D,j 6=i

xkj,n+i = 0 ∀i ∈ P, ∀k ∈ K (6)

∑
i∈V,i 6=w

xkw,i ≤ 1 ∀k ∈ Kw (7)

∑
k∈Kw

∑
i∈P

xkw,i ≤ |Kw| ∀w ∈W (8)

∑
k∈Kw

∑
i∈D

xki,w ≤ |Kw| ∀w ∈W (9)

∑
k∈Kw

∑
i∈P

xkw,i =
∑

k∈Kw

∑
i∈D

xki,w ∀w ∈W (10)

Qk
j ≥ Qk

i + qj −Q(1− xkij) ∀i ∈ N i 6= j,∀j ∈ P ∪D,∀k ∈ K (11)

Qk
n+i = Qk

i − qi ∀i ∈ P,∀k ∈ K (12)

0 ≤ Qk
i ≤ Q ∀i ∈ N, ∀k ∈ K (13)

T k
j ≥ T k

i + tij + si −M(1− xkij) ∀i ∈ N i 6= j,∀j ∈ P ∪D,∀k ∈ K (14)
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T k
n+i ≥ T k

i + ti,n+i + si ∀i ∈ P,∀k ∈ K (15)

ei ≤ T k
i ≤ li ∀i ∈ N, ∀k ∈ K (16)

xkij ∈ {1, 0} ∀(i, j) ∈ A ∀k ∈ K (17)

Equation (1) is the objective function where the total travel distance is minimized. The reason why
we only optimize the total travel distance is that the travel cost is directly proportional to travel distance.
Constraints (2) and (3) ensure that each node is served exactly once. Constraint (4) is the flow conservation.
Constraint (5) makes sure that vehicles cannot depart from those depots to which the vehicles do not belong.
Constraint (6) ensures that for every delivery order, its pickup and delivery nodes are served by the same
vehicle. For each depot w, constraints (7) - (10) ensure that the number of vehicle leaving from depot w
cannot exceed the maximum number of vehicle depot w has and that each vehicle leaving from depot w
must return to w at the end of its path. Constraints (11) - (13) calculates the load variables according
to arc used in the solution and make sure that the maximum loading capacity of vehicle is respected.
Analogously, constraints (14) and (16) calculates the time variables and ensure that time windows for service
are respected at each node i. Constraint (14) ensures that for each delivery order, its pickup node is served
before corresponding delivery node. Besides, the Last In, First Out (LIFO) rule is achieved in constraints
(11) and (14).

3 Comparisons between KL and JS divergence

There are two reasons why we employ Jensen-Shannon (JS) divergence rather than KL-divergence: 1) the
JS divergence is symmetric in calculation, i.e., DJS(p||q) = DJS(q||p), and 2) that the experimental results
show that JS divergence performs slightly better than KL divergence in our solution. As shown in the Fig. 1
and Fig. 2, our solution with JS divergence could get lower number of used vehicle and total cost on most
of the testing instances.
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Figure 1: Comparison between JS and KL divergence on NUV.
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Figure 2: Comparison between JS and KL divergence on TC.
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